
Data Structures and Analysis of Algorithms — Quiz 2
Sections 5 and 6 – Fadi Zaraket

Name:

Student ID:

Date:

Instructions and advice:

• This is page 1. The exam has 11 pages

• Your time is limited, use it carefully. You have 120 minutes to finish this exam.

• Write your name, student id and today’s date.

• You are allowed to have two cheat sheets with your name on it. Photocopies are not allowed.

• The mark on each question is an estimate of how many minutes you should spend on the
question.

• Read all questions before you start working on the exam. This will help you know where to
start.

• Start with the easiest questions.

• If you feel stuck, you probably misunderstood the question. Read it again. Still stuck, ask
for clarification.

• Don’t leave early. Check your answers.

• Be confident and do not look around.

• Show what you are doing even if you can do it all in your head. It helps you get partial credit.

• Do not leave a question without an answer, otherwise you leave the grader no choice.

• For multiple choice questions, if you do not know the answer, eliminate the obviously wrong
answers, then guess.

1

Part one. Binary search trees (15 pts.):

a. Write an algorithm that takes the root of a binary tree and returns whether the tree is a
binary search tree or not.

b. Show a binary search tree whose preorder and inorder traversals generate the same result.

2

Part two. Answer four of the five questions below. (15pts.)

a. How many nodes can exist on level h in a binary tree?

b. How many different hash functions can we have to place n items in m positions where n ≤ m?

c. We can preprocess and turn any binary search tree into a perfect binary tree in linear time.
We saw how we can do that with the DSW algorithm. Why then learn and use red black
balanced trees?

d. A node in a full binary tree has two children or zero children. How many leaves must we have
in a full binary tree with n nodes?

3

Part three. Heaps (15 pts.)
Build a max heap out of the array A = {4, 1, 3, 2, 16, 9, 10, 14, 8, 7} using the BuildHeap code

shown below.
Show the state of the array after each call to heapify.
Remember that heapify takes a fresh element (pointed to by i) and two heaps (considered to

be the sub-trees under i) and merges the two heaps using BubbleDown.

BuildHeap(A) {

HeapSize = length(A);

i = floor(length(A)/2);

for(; i >= 1; i--)

heapify(A,i)

}

4

Part four. Heaps and balanced search trees (15 pts.)
Describe how you would use a red-black balanced search tree to implement a heap; specifically

you need to support INSERT and EXTRACT-MIN operations in time O(log n), where n is the
number of items currently in the set.

The O(log n) complexity of these operations matches the complexity of these operations on a
heap. Give three reasons why the heaps we studied in class are superior to the approach based on
balanced binary search trees.

5

Part five. Hashing (8 pts.)
Describe the differences between chaining and open addressing for resolving collisions in a hash

table. Stress the relative advantages of each approach.

6

Part six. Expected depth of BST (15 pts.)
Let S be a set of n random numbers. Let T be a binary search tree that represents S. Explain

intuitively why D(n), the depth of T , is expected to be O(log n). Derive a recurrence equation that
computes the expected value of D(n) and attempt to solve it. Hint: use a similar approach to the
one we used with quicksort in class.

7

Part seven. Secret bid (10 pts.)
In a closed-bid auction (similar to ebay auctions), you submit your secret bid before the closed

deadline. If your competitor knows your bid, he/she can easily win by bidding 1 dollar higher than
your bid. You are worried that your competitors may have access to the data you submit before
time.

Think of a solution that can guard bidders from competitors. You may change the rules as long
as you keep the deadline fixed and the bid secret before the deadline. Hint: use hashing.

8

Part eight. Traversing and iterating (10 pts.)
Compare the running time of the in-order traversal of a binary search tree with calling minimum

and then successively calling next until we reach the end of the tree. Explain your reasoning.

9

Part nine. Sorting with red-black balanced trees (10 pts.)
You need to read n numbers and then print them out in sorted order. Suppose you have access

to a red-black balanced tree which supports the operations search, in-order-traverse, insert,

delete, minimum, maximum, successor and predecessor each in O(log n) time.

• How can you sort in O(n log n) time using only insert and in-order traversal?

• How can you sort in O(n log n) time using only minimum, successor, and insert?

• How can you sort in O(n log n) time using only minimum, insert, delete

10

Part ten. BONUS (10 pts.)

• You are given 12 coins. One of them is lighter or heavier than the others. You can use three
weighings. You have to identify the different coin.

• Insert 16 into the following red-black balanced tree. Assume you insert a new element using
regular binary search insert first, color it red, then you fix the broken properties of the tree.

7

4

17

6
15

9 24

27

11

